

Progressive Education Society's

Modern college of Arts, Science & Commerce,

Ganeshkhind, Pune 16 (Autonomous)

End Semester Examination Oct/Nov 2024 Faculty: Science and Technology

Program: BScGen03 Semester V SET A

Program(Specific): B.Sc Course Type:Core Class: T.Y.B.Sc.(Mathematics)

Max. Marks:35

Name of the Course: Metric Spaces Course Code: 24-MT 351
Paper No: I Time: 2 Hours

Instructions To the Candidates:

- 1. There are 3 sections in the question paper. Write each section on separate page.
- 2. All Sections are compulsory.
- 3. Figures to the right indicate full marks.
- 4. Draw a well labelled diagram wherever necessary.

SECTION: A

Q.1) Attempt any **five** of the following.

[10 marks]

- a) Does $d(x,y) = |\sin(x-y)|$ define a metric on \mathbb{R} ? Justify.
- b) Let X be the discrete metric space and $x \in X$. Find i) B(x,1/2), ii) B(x,2).
- c) In \mathbb{R} with usual metric, write closure of i) (0,1], ii) \mathbb{Q} .
- d) Show that (0,1] and $[1,\infty)$ are homeomorphic.
- e) Give an example of subset of \mathbb{R} which is connected but not compact.
- f) Find interior of the sets i) [1,2), ii) \mathbb{Z} in \mathbb{R} with usual metric.
- g) Is arbitrary intersection of open sets open in a metric space? Justify.

SECTION: B

Q.2) Attempt any **three** of the following.

[15 marks]

a) Show that the following set is closed in \mathbb{R}^2 with usual metric.

$$S = \{(x, y) \in \mathbb{R}^2 \mid xy = 0 \}$$

- b) If A and B are any subsets of a metric space X. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- c) Prove that limit of a sequence in a metric space (X,d) is unique.
- d) Let (X,d) be a metric space. Show that every convergent sequence in X is a Cauchy sequence.

e) Let A and B be two connected subsets of X with the property that $A \cap B \neq \phi$ then prove that $A \bigcup B$ is connected

SECTION: C

Q.3) Attempt any **one** of the following.

[10 marks]

a) Let (X, d) be a metric space. Define

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \quad \forall x, y \in X$$

Show that δ is a metric on X.

b) Define compact subset in a metric space. Show that if A and B are compact